

NCERT Solution Class 8 Maths Chapter 1- Rational Numbers

Exercise 1.1

? Question 1

Using appropriate properties, find:

	2	3	5	3	1	2	$\begin{pmatrix} 3 \end{pmatrix}$	1	3	. 1	2
(1) _	— ×	< — +	_		× –	(II) — ×			× —	+	× —
()	3	5	2	5	6	5	(7)	6	2	14	5
	0	0	_	0	0	e	< · /	Ŭ	_		e

• Answer:

(i) 2 (ii) $\frac{-11}{28}$

Solution:

(i) $-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$
$= \left(-\frac{2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} \right) + \frac{5}{2}$
$= \frac{3}{5} \times \left(\frac{-2}{3} - \frac{1}{6}\right) + \frac{5}{2}$
[Using a (b $-$ c) = ab - ac]
$= \frac{3}{5} \times \left(\frac{-4}{6} - \frac{1}{2}\right) + \frac{5}{2}$
$= \frac{3}{5} \times \frac{-5}{6} + \frac{5}{2}$
$= \frac{-1}{2} + \frac{5}{2}$
$= \frac{-1+5}{2}$
$=\frac{4}{2}$
- 2

(ii)
$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$$

$$= \left\{\frac{2}{5} \times \left(-\frac{3}{7}\right) + \frac{1}{14} \times \frac{2}{5}\right\} - \frac{1}{6} \times \frac{3}{2}$$

$$= \frac{2}{5} \left\{-\frac{3}{7} + \frac{1}{14}\right\} - \frac{1}{6} \times \frac{3}{2}$$

$$= \frac{2}{5} \left\{-\frac{6+1}{14}\right\} - \frac{1}{6} \times \frac{3}{2}$$

$$= \frac{2}{5} \times \frac{-5}{14} - \frac{1}{6} \times \frac{3}{2}$$

$$= \frac{-1}{7} - \frac{1}{4}$$

$$= \frac{-4-7}{28}$$

? Question 2

Write the additive inverse of each of the following:

(i)
$$\frac{2}{8}$$
 (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$

Answer:

(i)
$$\frac{-2}{8}$$
 (ii) $\frac{5}{9}$ (iii) $\frac{-6}{5}$ (iv) $\frac{2}{9}$ (v) $\frac{19}{6}$

Solution:

(i) The additive inverse of $\frac{2}{8}$ is $\frac{-2}{8}$

as
$$\frac{-2}{8} + \frac{2}{8}$$
$$= \frac{-2 + 2}{8}$$
$$= \frac{0}{8}$$
$$= 0$$

(ii) The additive inverse of $\frac{-5}{9}$ is $\frac{5}{9}$

as
$$\frac{5}{9} + \left(\frac{-5}{9}\right)$$

= $\frac{5 - 5}{9}$
= $\frac{0}{9}$
= 0

(iii) The additive inverse of $\frac{-6}{-5}$ is $\frac{-6}{5}$

as
$$\frac{-6}{5} + \left(\frac{-6}{-5}\right)$$

= $\frac{-6}{5} + \frac{6}{5}$
= $\frac{-6+6}{5}$
= $\frac{0}{5}$
= 0

(iv) The additive inverse of $\frac{2}{-9}$ is $\frac{2}{9}$

as
$$\frac{2}{9} + \left(\frac{2}{-9}\right)^{2}$$

$$= \frac{2}{9} + \left(\frac{-2}{9}\right)^{2}$$

$$= \frac{2}{9} - \frac{2}{9}$$

$$= \frac{0}{9}$$

$$= 0$$

(v) The additive inverse of $\frac{19}{-6}$ is $\frac{19}{6}$

? Question 3

Verify that -(-x) = x for : (i) $x = \frac{11}{15}$ (ii) $x = -\frac{13}{17}$

Answer:

i.e, -(-x) = x. is verified

Solution:

(i) We have,

$$x = \frac{11}{15}$$
 The additive inverse of $x = \frac{11}{15}$ is $-x = \frac{-11}{15}$
as $\frac{11}{15} + \left(\frac{-11}{15}\right) = 0$
The same equality $\frac{11}{15} + \left(\frac{-11}{15}\right) = 0$ shows that the additive inverse of $\frac{-11}{15}$ is $\frac{11}{15}$.

This
$$\Rightarrow -\left(\frac{-11}{15}\right) = \frac{11}{15}$$
, i.e, $-(-x) = x$. is verified.

(ii) We have,

$$x = -\frac{13}{17}$$

The additive inverse of $x = \frac{-13}{17}$ is $-x = \frac{13}{17}$

as
$$\frac{-13}{17} + \frac{13}{17} = 0.$$

 $\Rightarrow \frac{13}{17} = -(\frac{-13}{17})$

The same equality $\frac{-13}{17} + \frac{13}{17} = 0$ shows that the additive inverse of $\frac{13}{17}$ is $-\frac{13}{17}$. This $\Rightarrow -(-(\frac{-13}{17})) = \frac{-13}{17}$ i.e., -(-x) = x. is verified.

Question 4

Find the multiplicative inverse of the following

(i) -13 (ii)
$$\frac{-13}{19}$$
 (iii) $\frac{1}{5}$ (iv) $\frac{-5}{8} \times \frac{-3}{7}$

$$(v) - 1 \times \frac{-2}{5}$$
 $(vi) - 1$

Answer:

MarkSharks

(i)
$$-\frac{1}{13}$$
 (ii) $\frac{-19}{13}$ (iii) 5 (iv) $\frac{56}{15}$ (v) $\frac{5}{2}$ (vi) -1

Solution:

- (i) The multiplicative inverse of -13 is $-\frac{1}{13}$ as $-13 \times \frac{-1}{13} = 1$
- (ii) The multiplicative inverse of $\frac{-13}{19}$ is $\frac{-19}{13}$ as $-\frac{13}{19} \times \frac{-19}{13} = 1$

(iii) The multiplicative inverse of $\frac{1}{5}$ is 5 as $\frac{1}{5} \times 5 = 1$.

(iv) The multiplicative inverse of

$$\frac{-5}{8} \times \frac{-3}{7} \text{ is } \frac{8}{-5} \times \frac{7}{-3} = \frac{56}{15} \text{ as } \left(\frac{-5}{8} \times \frac{-3}{7} \right) \times \left(\frac{8}{-5} \times \frac{7}{-3} \right) = 1$$

(v) The multiplicative inverse of $-1 \times \frac{-2}{5}$ is $-1 \times \frac{5}{-2} = \frac{5}{2}$ as

(vi) The multiplicative inverse of – 1 is – 1 as – 1 \times (-1) = 1.

$$\left(-1 \times \frac{-2}{5}\right) \times \left(-1 \times \frac{5}{-2}\right) = 1$$

Question 5

Name the property under multiplication used in each of the following:

(i)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$$
 (ii) $-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$
(iii) $\frac{-19}{29} \times \frac{29}{-19} = 1$

Answer:

(i) Existence of Multiplicative Identity (1 is the multiplicative identity)

(ii) Commutatively

(iii) Existence of Multiplicative Inverse

Solution:

- (i) $\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$ as 1 is the multiplicative identity.
- (ii) $-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$ as multiplication is commutative.

(iii) $\frac{-19}{29} \times \frac{29}{-19} = 1$ as $\frac{29}{-19}$ is the multiplicative inverse of $\frac{-19}{29}$.

? Question 6

Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.

Answer:

 $\frac{-96}{91}$

Solution:

Reciprocal of $\frac{-7}{16}$ is $\frac{16}{-7}$.

Now,
$$\frac{6}{13} \times \left(\frac{16}{-7}\right) = \frac{-96}{91}$$

? Question 7

What property allows you to compute?

$$\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \operatorname{as} \left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$$

Answer:

Associativity of Multiplication

Solution:

For any three rational numbers a, b and $c, a \times (b \times c) = (a \times b) \times c.$

The multiplication is associative for rational numbers.

The associativity property allows us to compute $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \operatorname{as}\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$,

$$\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) = \frac{1}{3} \times \frac{24}{3} = \frac{8}{3} \text{ and } \left(\frac{1}{3} \times 6\right) \times \frac{4}{3} = \frac{6}{3} \times \frac{4}{3} = \frac{8}{3}$$

Here, $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) = \left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$

Question 8

Is $\frac{8}{9}$ the multiplicative inverse of $-1\frac{1}{8}$? Why or why not?

Answer:

No, because the product is not 1

Solution:

No, because the product of $\frac{8}{9}$ and $-1\frac{1}{8}$ is not 1

Question 9

Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or Why not?

Answer:

Yes, because $0.3 \times \frac{10}{3} = \frac{3}{10} \times \frac{10}{3} = 1$

Solution:

Yes, because
$$3\frac{1}{3} = \frac{10}{3}$$
 and $0.3 \times \frac{10}{3} = \frac{3}{10} \times \frac{10}{3} = 1$

? Question 10

Write:

- (i) The rational number that does not have a reciprocal.
- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

Answer:

(i) 0 (ii) 1 and -1 (iii) 0

Solution:

- (i) Zero has no reciprocal.
- (ii) 1 is equal to its reciprocal as $1 \times 1 = 1$.
- -1 is also equal to its reciprocal as $-1 \times (-1) = 1$
- (iii) Zero is equal to its negative as 0 + 0 = 0.

O Question 11

Fill in the blanks:

- (i) Zero has _____ reciprocals.
- (ii) The numbers ______ and _____ are their own reciprocals.
- (iii) The reciprocal of 5 is _____

(iv) Reciprocal of $\frac{1}{r}$, where $x \neq 0$ is _____

- (v) The product of two rational numbers is always a ______
- (vi) The reciprocal of a positive rational number is _____

Answer:

```
(i) No (ii) 1, -1 (iii) \frac{-1}{5}
```

(v) Rational number

(vi) Positive

(iv) x

Solution:

(i) No (ii) 1, -1 (iii) $\frac{-1}{5}$ (iv) x (v) rational number

(vi) a positive rational number.

Exercise 1.2

MarkSharks

Question 1

Represent these numbers on the number line (i) $\frac{7}{4}$ (ii) $\frac{-5}{6}$

Solution:

(i) To represent $\frac{7}{4}$, we make 7 markings of distance $\frac{1}{4}$ each on the right of 0.

Chapter 1- Rational Numbers

Solution:

We draw a line *l*. We take a point O on it. From O, we mark 11 markings of distance $\frac{1}{11}$ each on the

left of O (i.e., 0)

Thus, the points A, B and C represent $\frac{-2}{11}$, $\frac{-5}{11}$ and $\frac{-9}{11}$ respectively.

? Question 3

Write five rational numbers which are smaller than 2.

Answer:

Some of these are 1, $\frac{1}{2}$, 0, -1, $\frac{-1}{2}$

(There can be many more such rational numbers)

Solution:

Let's take the two numbers 0 and 2. 0 is smaller than 2.

Now, 2 can be written as $\frac{20}{10}$ and 0 as $\frac{0}{10}$. Thus, we have $\frac{19}{10}$, $\frac{18}{10}$, $\frac{17}{10}$, $\frac{16}{10}$, $\frac{15}{10}$, $\frac{14}{10}$ $\frac{1}{10}$ between 2 and 0.

We can take any five of these values.

Question 4

Find ten rational numbers between
$$\frac{-2}{5}$$
 and $\frac{1}{2}$.

Answer:

 $\frac{-7}{20}, \frac{-6}{20}, \frac{-5}{20}, \dots, \frac{-8}{20}, \frac{-9}{20}$

(There can be many more such rational numbers)

Solution:

First, we make the same denominator of the given rational numbers.

$$\frac{-2}{5} = \frac{-2 \times 2}{5 \times 2} = \frac{-4}{10} = \frac{-4 \times 2}{10 \times 2} = \frac{-8}{20}$$

and

 $\frac{1}{2} = \frac{1 \times 5}{2 \times 5} = \frac{5}{10} = \frac{5 \times 2}{10 \times 2} = \frac{10}{20}$

MarkSharks

Note: We make denominator 20 because when the denominator is 10, then we can conveniently find out only 8 rational numbers.

Thus, we have $\frac{-7}{20}$, $\frac{-6}{20}$, $\frac{-5}{20}$, $\frac{8}{20}$, $\frac{9}{20}$

We can take any ten of these values.

Question 5

Find five rational numbers between

(i)
$$\frac{2}{3}$$
 and $\frac{4}{5}$ (ii) $\frac{-3}{2}$ and $\frac{5}{3}$ (iii) $\frac{1}{4}$ and $\frac{1}{2}$

Answer:

(i)
$$\frac{41}{60}$$
, $\frac{7}{10}$, $\frac{11}{15}$, $\frac{23}{30}$
(ii) $\frac{-8}{6}$, $\frac{-7}{6}$, $\frac{-6}{6}$, $\frac{-5}{6}$, $\frac{-4}{6}$ $\frac{8}{6}$, $\frac{9}{6}$
(iii) $\frac{11}{24}$, $\frac{10}{24}$, $\frac{9}{24}$, $\frac{8}{24}$, $\frac{7}{24}$

(There can be many more such rational numbers)

Solution:

(i)
$$\frac{2}{3}$$
 and $\frac{4}{5}$

First Method:

We first convert $\frac{2}{3}$ and $\frac{4}{5}$ to rational numbers with the same denominator i.e.

$$\frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15} = \frac{10 \times 3}{15 \times 3} = \frac{30}{45} \text{ and } \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15} = \frac{12 \times 3}{15 \times 3} = \frac{36}{45}$$

Thus, we have, $\frac{35}{45}$, $\frac{34}{45}$, $\frac{33}{45}$, $\frac{32}{45}$ and $\frac{31}{45}$ as five ration numbers between $\frac{2}{3}$ and $\frac{4}{5}$

Another Method:

We know that, if a and b are two rational numbers, then $\frac{a + b}{2}$ is a rational

number between a and b such that a $< \frac{a + b}{2} < b$.

We find the mean of the given rational numbers,

$$\left(\frac{2}{3} + \frac{4}{5}\right) \div 2 = \left(\frac{10 + 12}{15}\right) \times \frac{1}{2} = \frac{22}{15} \times \frac{1}{2} = \frac{11}{15}$$

So, $\frac{2}{3} < \frac{11}{15} < \frac{4}{5}$

We now find another rational number between $\frac{2}{3}$ and $\frac{11}{15}$.

For this, we again find the mean of $\frac{2}{3}$ and $\frac{11}{15}$, i.e.,

$$\left(\frac{2}{3} + \frac{11}{15}\right) \div 2 = \left(\frac{30 + 33}{45}\right) \times \frac{1}{2} = \frac{63}{45} \times \frac{1}{2} = \frac{7}{5} \times \frac{1}{2} = \frac{7}{10}$$

So, $\frac{2}{3} < \frac{7}{10} < \frac{11}{15}$ or $\frac{2}{3} < \frac{7}{10} < \frac{11}{15} < \frac{4}{5}$

Further, we find another rational number between $\frac{11}{15}$ and $\frac{4}{5}$

For this, we again find the mean of $\frac{11}{15}$ and $\frac{4}{5}$ i.e,

$$\left(\frac{11}{15} + \frac{4}{5}\right) \div 2 = \left(\frac{11 + 12}{15}\right) \times \frac{1}{2} = \frac{23}{15} \times \frac{1}{2} = \frac{23}{30}.$$

So, $\frac{11}{15} < \frac{23}{30} < \frac{4}{5}$ or $\frac{2}{3} < \frac{7}{10} < \frac{11}{15} < \frac{23}{30} < \frac{4}{5}$

Now, we find another rational number between $\frac{2}{3}$ and $\frac{7}{10}$

For this, we again find the mean of $\frac{2}{3}$ and $\frac{7}{10}$, i.e, $\left(\frac{2}{3} + \frac{7}{10}\right) \div 2 = \left(\frac{20 + 21}{30}\right) \times \frac{1}{2} = \frac{41}{30} \times \frac{1}{2} = \frac{41}{60}$ So, $\frac{2}{3} < \frac{41}{60} < \frac{7}{10}$ or $\frac{2}{3} < \frac{41}{60} < \frac{7}{10} < \frac{11}{15} < \frac{23}{30} < \frac{4}{5}$ Also, we find another rational number between $\frac{23}{30}$ and $\frac{4}{5}$ For this, we again find the mean of $\frac{23}{30}$ and $\frac{4}{5}$, i.e. $\left(\frac{23}{30} + \frac{4}{5}\right) \div \frac{1}{2}$ $\left(\frac{23 + 24}{30}\right) \times \frac{1}{2} = \frac{47}{30} \times \frac{1}{2} = \frac{47}{60}$ So, $\frac{23}{30} < \frac{47}{60} < \frac{4}{5}$ or $\frac{2}{3} < \frac{41}{60} < \frac{7}{10} < \frac{11}{15} < \frac{23}{30} < \frac{47}{60} < \frac{4}{5}$ Thus, the five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$ are $\frac{41}{60}$, $\frac{7}{10}$, $\frac{11}{15}$, $\frac{23}{30}$ and $\frac{47}{60}$ (ii) $\frac{-3}{2}$ and $\frac{5}{2}$ We first convert $\frac{-3}{2}$ and $\frac{5}{3}$ to rational numbers with the same denominator i.e., $\frac{-3}{2} = \frac{-3 \times 3}{2 \times 3} = \frac{-9}{6}$ and $\frac{5}{3} = \frac{5 \times 2}{2 \times 3} = \frac{10}{6}$ Thus, we have $\frac{-8}{6}$, $\frac{-7}{6}$, $\frac{-6}{6}$, $\frac{-5}{6}$, $\frac{-4}{6}$ $\frac{8}{6}$, $\frac{9}{6}$

We can take any five of these values as rational numbers between $\frac{-3}{2}$ and $\frac{5}{3}$.

(iii) $\frac{1}{4}$ and $\frac{1}{2}$

We first convert $\frac{1}{4}$ and $\frac{1}{2}$ to rational numbers with the same denominator

i.e., $\frac{1}{4} = \frac{1 \times 6}{4 \times 6} = \frac{6}{24}$ and $\frac{1}{2} = \frac{1 \times 12}{2 \times 12} = \frac{12}{24}$.

Ouestion 6

Write five rational numbers greater than - 2.

Answer:

-1. 0. 1, 2, 3 (There can be many more such rational numbers)

Solution:

Since, every integer is a rational number, therefore, we can pick up any five integers greater than -2.

Thus five rational numbers greater than -2 are -1, 0, 1, 2, 3.

Question 7

Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$.

Answer:

59	58	57	56	55	54	53	52	51	50	49
$\overline{80}$,	$\overline{80}$,	$\overline{80}$,	$\overline{80}$,	$\overline{80}$ '	$\overline{80}$,	80				

(There can be many more such rational numbers)

Solution:

First we make the denominator of the given rational numbers equal

$$\frac{3}{5} = \frac{3 \times 4}{5 \times 4} = \frac{12}{20} = \frac{24}{40} = \frac{48}{80}$$

and

 $\frac{3}{4} = \frac{3 \times 5}{4 \times 5} = \frac{15}{20} = \frac{30}{40} = \frac{60}{80}$ Thus, we have, $\frac{59}{80}$, $\frac{58}{80}$, $\frac{57}{80}$, $\frac{56}{80}$, $\frac{55}{80}$, $\frac{54}{80}$, $\frac{53}{80}$, $\frac{52}{80}$, $\frac{51}{80}$, $\frac{50}{80}$, $\frac{49}{80}$ as rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$.

We can take any ten of these values.